Quadratic residues and non-residues : selected topics /

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapt...

Full description

Saved in:
Bibliographic Details
Main Author: Wright, Steve (Steve J.) (Author)
Format: Book
Language:English
Published: [Cham] Switzerland : Springer, [2016]
Series:Lecture notes in mathematics (Springer-Verlag) 2171.
Subjects:

MARC

LEADER 00000cam a2200000Ia 4500
001 5e40dd4c-821a-4843-b045-8a1f6553042a
005 20240705000000.0
008 161130s2016 sz a b 001 0 eng d
010 |a  2016956697 
019 |a 954535835  |a 956685925 
020 |a 9783319459547 
020 |a 3319459546 
020 |z 9783319459554  |q (eBook) 
035 |a (OCoLC)964631438 
040 |a VDB  |b eng  |c VDB  |d VDB  |d OCLCO  |d UMS  |d MUB  |d OHX  |d OCLCF  |d STF  |d PAU  |d ORE  |d MYG  |d OCLCQ  |d RBN  |d EQO  |d MNU 
049 |a MNUA 
050 4 |a QA3  |b .L28 no.2171 
082 0 4 |a 513.6  |2 23 
100 1 |a Wright, Steve  |q (Steve J.)  |e author. 
245 1 0 |a Quadratic residues and non-residues :  |b selected topics /  |c Steve Wright. 
264 1 |a [Cham] Switzerland :  |b Springer,  |c [2016] 
300 |a xiii, 292 pages :  |b illustrations ;  |c 24 cm. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 2171 
504 |a Includes bibliographical references (pages 285-287) and index. 
505 0 |a Introduction: Solving the General Quadratic Congruence Modulo a Prime -- Basic Facts -- Gauss' Theorema Aureum: the Law of Quadratic Reciprocity -- Four Interesting Applications of Quadratic Reciprocity -- The Zeta Function of an Algebraic Number Field and Some Applications -- Elementary Proofs -- Dirichlet L-functions and the Distribution of Quadratic Residues -- Dirichlet's Class-Number Formula -- Quadratic Residues and Non-residues in Arithmetic Progression -- Are quadratic residues randomly distributed? -- Bibliography. 
520 |a This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet's Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory. 
650 0 |a Number theory 
650 0 |a Congruences and residues. 
650 7 |a Congruences and residues  |2 fast  |0 (OCoLC)fst00875240 
650 7 |a Number theory  |2 fast  |0 (OCoLC)fst01041214 
776 0 8 |i Online version:  |a Wright, Steve (Steve J.).  |t Quadratic residues and non-residues.  |d Cham, Switzerland : Springer, 2016  |z 9783319459554  |w (OCoLC)964656014 
773 0 |t Lecture notes in mathematics (Springer-Verlag)  |w 9964938430001701  |g no:2171 
830 0 |a Lecture notes in mathematics (Springer-Verlag)  |v 2171. 
999 1 0 |i 5e40dd4c-821a-4843-b045-8a1f6553042a  |l 9975214508901701  |s US-MNU  |m quadratic_residues_and_non_residuesselected_topics_________________________2016_______sprina________________________________________wright__steve______________________p