Introduction to error control codes /
This textbook provides a firm foundation for those studying the field of error control codes. giving step-by-step instruction on this complex topic beginning with single parity code checks and repetition codes. Through these basic error-control mechanisms the fundamental principles of error detectio...
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Oxford ; New York :
Oxford University Press,
2001.
|
Series: | Textbooks in electrical and electronic engineering ;
9. |
Subjects: |
Table of Contents:
- 1 Block codes
- 1.1 Digital communication channel 1
- 1.2 Introduction to block codes 4
- 1.3 Single-parity-check codes 8
- 1.4 Product codes 15
- 1.5 Repetition codes 16
- 1.6 Hamming codes 22
- 1.7 Minimum distance of block codes 28
- 1.8 Soft-decision decoding 35
- 1.9 Automatic-repeat-request schemes 38
- 2 Linear codes
- 2.1 Definition of linear codes 42
- 2.2 Generator matrices 45
- 2.3 Standard array 52
- 2.4 Parity-check matrices 56
- 2.5 Error syndromes 61
- 2.6 Error detection and correction 64
- 2.7 Shortened and extended linear codes 67
- 3 Cyclic codes
- 3.1 Definition of cyclic codes 73
- 3.2 Polynomials 74
- 3.3 Generator polynomials 79
- 3.4 Encoding cyclic codes 81
- 3.5 Decoding cyclic codes 85
- 3.6 Factors of x[superscript n] + 1 87
- 3.7 Parity-check polynomials 90
- 3.8 Dual cyclic codes 92
- 3.9 Generator and parity-check matrices of cyclic codes 94
- 4 Linear-feedback shift registers for encoding and decoding cyclic codes
- 4.1 Linear-feedback shift registers 98
- 4.2 Polynomial-division register 101
- 4.3 Registers for encoding 106
- 4.4 Registers for error detection and correction 114
- 4.5 Meggitt decoder 117
- 5 Linear algebra
- 5.1 Sets 129
- 5.2 Groups 129
- 5.3 Fields 134
- 5.4 Vector spaces 136
- 5.5 Matrices 144
- 5.6 Linear codes as vector spaces 146
- 5.7 Dual codes 150
- 6 Galois fields
- 6.1 Roots of equations 154
- 6.2 Galors field GF(2[superscript 3]) 157
- 6.3 Fields GF(2[superscript 4]) and GF(2[superscript 5]) 162
- 6.4 Primitive field elements 167
- 6.5 Irreducible and primitive polynomials 169
- 6.6 Minimal polynomials 172
- 6.7 Solution of equations in GF(2[superscript 4]) and GF(2[superscript 3]) 175
- 7 Bose-Chaudhuri-Hocquenghem codes
- 7.1 Cyclic codes revisited 184
- 7.2 Definition and construction of binary BCH codes 186
- 7.3 Error syndromes in finite fields 188
- 7.4 Decoding SEC and DEC binary BCH codes 192
- 7.5 Error-location polynomial 197
- 7.6 Peterson-Gorenstein-Zierler decoder 202
- 7.7 Reed-Solomon codes 207
- 7.8 Berlekamp algorithm 218
- 7.9 Error-evaluator polynomial 225
- 8 Convolution codes
- 8.2 Encoding convolutional codes 235
- 8.3 Generator matrices for convolutional codes 240
- 8.4 Generator polynomials for convolutional codes 242
- 8.5 Graphical representation of convolutional codes 246
- 8.6 Viterbi decoder 250.