Automatic detection of RWIS sensor malfunctions : (phase I) /

The overall goal of this project was to develop computerized procedures that detect Road Weather Information System (RWIS) sensor malfunctions. In this phase of the research we applied two classes of machine learning techniques to data generated by RWIS sensors in order to predict sensor malfunction...

Full description

Saved in:
Bibliographic Details
Corporate Authors: University of Minnesota. Intelligent Transportation Systems Institute, University of Minnesota, Duluth. Department of Computer Science, University of Minnesota, Duluth. Northland Advanced Transportation Systems Research Laboratories
Other Authors: Crouch, Carolyn J.
Format: Book
Language:English
Published: Minneapolis, Minn. : Intelligent Transportation Systems Institute, Center for Transportation Studies, University of Minnesota, [2009]
Series:CTS (Series : Minneapolis, Minn.) 09-10.
Subjects:

MARC

LEADER 00000cam a2200000Ia 4500
001 0feef41e-a846-443a-9508-ae1c0897ea38
005 20240707000000.0
008 090923s2009 mnuad b s000 0 eng d
035 |a (Mn-Hw)006957435SYS01 
035 |a 438191833 
035 |a ocn438191833 
035 |a (EXLNZ-01MNPALS_NETWORK)9910088606804266 
040 |a MDT  |c MDT  |d MDT 
043 |a n-us-mn 
049 |a MDTA 
088 |a CTS 09-10 
090 |a TE228.3  |b .A96 2009 V.1  |9 LOCAL 
245 0 0 |a Automatic detection of RWIS sensor malfunctions :  |b (phase I) /  |c prepared by Carolyn Crouch ... [et al.]. 
260 |a Minneapolis, Minn. :  |b Intelligent Transportation Systems Institute, Center for Transportation Studies, University of Minnesota,  |c [2009] 
300 |a 38, 9 p. :  |b col. ill., col. charts ;  |c 28 cm. 
490 1 |a CTS ;  |v 09-10 
513 |a Final report. 
500 |a "March 2009." 
536 |a Performed by the Dept. of Computer Science and Northland Advanced Transportation Systems Research Laboratory (NATSRL), University of Minnesota Duluth  |f CTS Project # 2005017 
530 |a Also available online via Internet. 
520 3 |a The overall goal of this project was to develop computerized procedures that detect Road Weather Information System (RWIS) sensor malfunctions. In this phase of the research we applied two classes of machine learning techniques to data generated by RWIS sensors in order to predict sensor malfunctions and thereby improve accuracy in forecasting temperature, precipitation, and other weather-related data. We built models using machine learning methods that employ data from nearby sensors in order to predict likely values of those sensors that are being monitored. A sensor that deviates noticeably from values inferred from nearby sensors indicates that the sensor has begun to fail. We used both classification and regression algorithms in Phase I. In particular, we used three classification algorithms (namely, J48 decision trees, naive Bayes, and Bayesian networks) and six regression algorithms (that is, linear regression, least median squares, M5P, multilayer perceptron, radial basis function network, and the conjunctive rule algorithm). We performed a series of experiments to determine which of these models can be used to detect malfunctions in RWIS sensors. We compared the values predicted by the various machine learning methods to the actual values observed at an RWIS sensor to detect sensor malfunctions. This report provides an overview of the nine models used and a classification of the applicability of each model to the detection of RWIS sensor malfunctions. 
504 |a Includes bibliographical references (p. 37-38). 
599 |a CTS-09-10  |9 LOCAL 
650 0 |a Weather forecasting  |z Minnesota  |x Mathematical models. 
650 0 |a Detectors  |z Minnesota  |x Mathematical models. 
650 0 |a Errors. 
650 7 |a Road weather information systems.  |2 trt 
690 |a Internet resource.  |9 LOCAL 
700 1 |a Crouch, Carolyn J. 
710 2 |a University of Minnesota.  |b Intelligent Transportation Systems Institute. 
710 2 |a University of Minnesota, Duluth.  |b Department of Computer Science. 
710 2 |a University of Minnesota, Duluth.  |b Northland Advanced Transportation Systems Research Laboratories. 
830 0 |a CTS (Series : Minneapolis, Minn.)  |v 09-10. 
999 1 0 |i 0feef41e-a846-443a-9508-ae1c0897ea38  |l 990069574350104293  |s US-MNHW  |m automatic_detection_of_rwis_sensor_malfunctionsphase_i_____________________2009_______intela___________________________________________________________________________p 
999 1 1 |l 990069574350104293  |s ISIL:US-MNHW  |i Minnesota Department of Transportation  |t BKS  |a CTS  |c TE228.3 .A96 2009 V.1  |b 30314000378439  |x BOOK  |y 2312201960004293  |p LOANABLE 
999 1 1 |l 990069574350104293  |s ISIL:US-MNHW  |i Minnesota Department of Transportation  |t BKS  |a MAIN  |c TE228.3 .A96 2009 V.1  |b 30314000378637  |x BOOK  |y 2312202030004293  |p LOANABLE